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The LHK computer code is described herein as
it existed on July 30, 1964 . The code has been in
continuous development for | year and in its presented
form has been applied succ_e_ssfully by General Atomic
to the kind of problems discussed later in this report.
However, the development and improvement of the code

arebeing continued, so that duplication of results (or even
close agreement) between problems run with the code as
publishedand the code as it existed either before or after
this time is not necessarily to be expected.

General Atomic has exercised due care in preparation,
but does not warrant the merchantability, accuracy, and
completeness of the code or of its description contained
herein. The complexity of this kind of program precludes
any guarantee to that effect. Therefore, any user must
make his own determination of the suitability of the code
for any specific use, and of the validity of the information
produced by use of the code.




INTRODUCTION

| ALOE

This report describes the code LHK, which calculates double-differ-
ential cross sections, total cross sections, and kernels for liquid para-
and ortho-hydrogen. The physical model and derivation of the equations
are given in reference (1). |

Section I presentg the equations as they are used in the code; Sec-
tion II provides an over-all description of the code and comments about
various subroutinesj III discusses the various approximations used, their
effects, and some of the checks made; IV describes additions to the code

which may be made; and Section V gives the input instructionms.




I. The Equations

The equations given here are those of reference (1) rewritten so
that subscripts number from one up, rather than from O, for ease in

programming. Some simple regrouping has been done, again for convenience.
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When xe/BMw << 1, the simpler expressions below may be used:
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where the j L(on) are the spherical bessel functions defined by
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Here, Eo = initial neutron energy, E = final neutron energy, u = 7-Q',
me1.67243 x 10" gn, 820.75 x 10°0 cm, 42=0.433192 x 10°3° (ev-sec)?,
and kT = llquld hydrogen temperature in ev,

The A , are defined by
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Here a = %9-, A= m

A and a are used independently in the code although they are related; the

choice of which to use is made for convenience,



These recursion relations break down at high £ for A\ < 2

where the following expansion is used:
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In the code, the An g are rewritten so that n and £ run from 1 up
>

rather than from O. Then, An+z is used if L+1 is even, and A ", if 441
H 9

is odd.

II. Code Description

The overall structure of the code is borrowed from a General Atomic

code for the calculation of Nelkin water kernels. This code is undocumented,

but an intermediate version is described in reference (2).

iven a set of energies and angles, the code calculates the double-
differential cross sections for selected energy pairs (those corresponding
to down-scattering), integrates over angle to form the Legendre moments
(the kernels), forms the upscattering half of the scattering matrix by

detailed balance, and finally integrates over final energies to form total

cross sections.



The double-differential cross sections for both para- and ortho-
hydrogen are produced at the same time by subroutine LHK (Egs. (1) and (2))
using subroutine CC to evaluate the Anfz (Eas. (&), (5), (6) and (7)), or,
for n2/8m» << 1, subroutine LHLYW (Egs. (la) and (2a)) using CSB for the
3,@) (ea. (3)).

The angular integration was a matter of some concern. Plots of
O(E,Eo,u) indicated that a fixed set of angles probably did not produce
very reliable kernels and total cross sections. A double-gaussian
integration routine was inserted to avoid this difficulty. The code
varies the energies as follows: for a fixed initial energy Eo’ final
energies are chosen from Eo-down to Emin’ the lowest energy in the list,
Inspection of angular plots of J(E,Eo,p) as E goes from E_ to E .
indicates that the function is sharply peaked toward U = +1 for Eo = E,
and becomes fairly smooth in angle as E - Emin’ with the peak moving
smoothly if the energy variation is made in small increments. The ranges

for the doubleégaussian guadrature are therefore chosen so: for E = Eo’

the interval (-1,1) is split at 0.9 into two ranges, (-1,.9) and (.9,1).

Thereafter, for a fixed E , the peak of the angular variation of cp(Ei,Eo,u)

is used for the split angle, ©, for the quadrature for the next lower

energy, OP(Ei 1 Eo,u). The double-range formula for a split angle 8,
- s
where w, and M, are weights and abscissae for the interval (-1,1),
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The spherical bessel functions (Egs. (3)) are calculated in the
subroutine CSB by a backward recursion technique(3) to avoid numerical
difficulties encountered in same ranges of the argument when using the
direct approach. In this method, jn(a) is set to O,jn_lcl) to an arbitrary
small mumber (say 10'37), and the recursion relation is used to obtain the
jz(a), 4=n-2,...,0. Here n is chosen as 30 for @ = 1.0, and depends on Q
for @ < 1. The backward recursion, starting with these arbitrary choices
of high order values, produces a set of values which satisfies the recursion
relation but desnot fulfill the additional condition jo(a) = sin(a)/a. The
series of values is normalized to this value of jo, which gives a correct
representation of the jzcl) for 4 < n, since errors introduced by the
arbitrary choice of jn(a) and jn_l(a) damp out if jn_l(a) is truly small
compared to the values of jz(a) for the range of interest of £.

The basic integral A:q (o,\) is calculated by a repeated 10-point
gaussian quadrature routine , in which the number of points used is made

to depend on a. For & £ 7, 10 points are used. For a >m, n X 10 points

are used, where n is the integer part of a/M. This procedure ensures that
the integrand is slowly-varying between integration points.

Since P0 and P. kernels for both para- and ortho-hydrogen more than

1
f£ill the memory for any reasonable energy mesh, the ortho-hydrogen kernels

are stored on a scratch tape as they are calculated by the routines B¢

and XBp. These are supplied information one word at a time; when 100 have
been collected, the block is written on tape. Reading the information back is
controlled by routines BI and XBI, which supply one word at a time to the
calling program, reading in a block of 100 whenever necessary. These routines

were mandatory for the 7090 to reduce the amount of tape used and the time

spent in writing and reading tapes; they are probably less necessary for the

7044 but have been left in to avoid reprogramming.



ITI. Approximations and Checks

The simpler expressions for cp(E,Eo,u) and GO(E,EO,u) given by (1a)
and (2a) are used whenever n2/8mb <E, provided the initial energy B <R,
A value of Ec2 = .0l has Jjoined these expressions smoothly to the regular
expressions (1) and (2) for 5., =03 ev. Higher values of Z_,, up to 0.1

say, should be tried. Ecl should probably not be any greater than 0.3,

since expressions (la) and (2a) do not apply above the first vibrational level.

The number of vibrational levels treated is now given by the smallest

_integer n (one greater than the number of vibrational quanta) satisfying

The largesi number of rotational levels allowed is now set to 19,
which allows for initiel energies up to 1.0 ev. The Aﬁfﬂ are calculated
for n vibrational lcvels and 15 rotational levels always; the sums in (1)
and (2) being truncated in 4 (when no further significant contribution is
made) as follows: for n = 1, 4 goes from 1 to 3 always, and stops when
either 2 reaches 15 or the argument of the ortho exponential term (since
this peaks at a higher 4 then the pera- term) is increcasing and the term

itself is less than 10'7. For n > 1, the sum is truncated as above for

any value of £ from 2 to 15.



For . € 2 the An’z are calculated with eq. (7) using terms in v
up to the v . for which (A )\’/v'. $ 1o.'“. A cutoff value of 10"+ pro-
duces double-differential cross sections differing in the third or fourth
place from those calculated with a cutoff of 10'3. A cutoff value of
lO-u has so far been found to be consistant with vmax § 10 for a maximum
energy of 1 ev,

A consistency check was made by comparing the An,z for X = 2i10'3,
so that the expansion and recursion techniques were used for very nearly
equal arguments. The two methods produced answers well within the
expected agreement. Hand checks of both methods were also made.

The spherical bessel functions, jﬁ(a), used in Egs. (la) and (22)
and in the expansion form of the An,z for X £ 2 have been calculated
several ways to check the methods used. The forward recursion relation
was found to break down for various ranges of the argument. The backward

recursion technique gives sufficient accuracy over the ranges of argument

encountered (the ranges are limited by A £ 2 and %2/8mw << Ec2)'

IV. Proposed Changes

Should it ever be necessary to generate kernels with more than
about 20 energy points, data that is now left in core would have to be
stored con tape for later use. The Pl para kernel could easily be put on
tape, releasing about 6400 locations. After punching the P_ para kernel

and calculating total Po cross sections, the Pl kernel could be read back
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into the location occupied by the P0 kernel, punched, and have total Pl
cross sections calculated. The ortho kernels could then be treated the
same way.

The basic calculation could be speeded up considerably if a simple
method of predicting the number of terms needed in £ in Egs. (1), (1a)
and (2), (2a) were available; this would eliminate unnecessary calcu-
lations of the An,i'

The current version of the code calculates cross sections for
liquid hydrogen only. The basic subroutine ILHK could be rewritten using
the formulation given in reference (1) in terms of the Clebsch-Gordon
coefficients which allows for treating molecular hydrogen at much higher
temperatures.

The code could easily be modified to calculate molecular deuterium

cross sections, as given in reference (1).

An additional calculation option might be added to calculate

Emax )
do(E) _ a & g (B=E',u)
aa o d0dE" )

The coding to do this would be the same as the kernel generating
section of the code, with the angle integration deleted. It is not
possible to combine this sort of calculation with a kernel calculation
since the double~gaussian quadrature used for the kernels does not pro-

duce the same set of angles for various final energies with fixed initial

energies.
V. Input

Various constants are built into the program, and are set in the

subroutines SETLHK. They are: 2 = 0.433192 x 10739 (ev.sec)?,
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w = 0,54617 ev, proton mass = 1.67243 x lo'eu gm, the equilibrium atomic

separation a = 0.75 R, and the coherent and incoherent scattering

amplitudes a, = 0.0352 and a; = 1.586.

Card Format Name

1 1346, 12 HPLREC,

Description

label, columns 73-78 are output kernel
card label.

Ip IP > O to print double differential data
during kernel calculation. IP =0 to
eliminate this printing.

2 3I10,4E10 ID, NE, ID = rumeric identification

NA, T,

BARNS, NE = number of energies

EC1,EC2
NA = number of angles
T = Temperature in ev divided by 0.0253
BARNS = bound hydrogen cross section

(81.6 varn)
ECL = highest energy at which (la) and
(2a) may be used (0.3).
EC2 = value of n2/8nw below which (12)
and (2a) may be used if E < EC1{0.01).
3 110,E10 IBUG, IBUG = O for kernel calculation
AMULM

2 for double-differential cross
section calculation

AMUIM = limit of absolute value of division
point 6 of angular integration
range for double-gaussian quadra-
ture (see Eq. (8) ). AMUIM set to
0.9 if left blank.

Section A If IBUG = O, continue input from Section B

La 2110 NMUS, NMUS = number of angles for double-
NES differential calculation
NES = number of energies for double-

differential calculation.



Card Format Name
5a 2E10 D,M
ba TE10 E

Return to card ba for next
problem input.

Section B (IBUG=0)

12

Description

NMUS values of angles, expressed as D
degrees and M minutes (one angle per
card).

NES energies. The last (highest) energy

is used as initial energy, and double-
differential cross sections from this
energy to all the others at all the angles
are calculated .

if NA > 0 it must be 15, in which case a set of 15 gaussian
weights and angles are supplied by the code for the angular
integrations. Skip to card 6b.

if NA < 0, a double-gaussian quadrature is to be used, with
N = -NA points (N £ 7) in each of the two halves of the range,
with the additional input of cards U4b and 5b.

Lp 7E10 AV
5b 7E10 AWV
6b 6E12 E

N values of angles for double-gaussian
quadrature.

N values of weights for double-gaussian
quadrature (s weights = 1.0),

NE values of energy for kernel calculation.

Return to card 1 for next problem input.
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